COMPREHENSIVE CARDIAC REHABILITATION PROGRAMME IMPROVES QUALITY OF LIFE AND EXERCISE TOLERANCE IN LOW RISK CARDIAC PATIENTS.

Seng Khiong JONG1, Daphne Teck Ching LAI2, Chee Fui CHONG3, Sok King ONG4, Chean Lin CHONG5
1Cardiac Rehabilitation, Occupational Therapy Unit, Raja Isteri Pengiran Anak Saleha Hospital, Negara Brunei Darussalam, 2Department of Computer Science, Faculty of Science, Universiti Brunei Darussalam, Negara Brunei Darussalam, 3Department of Surgery, Raja Isteri Pengiran Anak Saleha Hospital, Negara Brunei Darussalam, 4Department of Public Health, Ministry of Health, Negara Brunei Darussalam, 5Cardiology Unit, Department of Internal Medicine, Raja Isteri Pengiran Anak Saleha Hospital, Negara Brunei Darussalam

ABSTRACT

Objective: To assess the effect of an outpatient comprehensive cardiac rehabilitation (CCR) programme on cardiac risk factors and quality of life among low risk cardiac patients. Method: Retrospective review of 240 low risk cardiac patients who were enrolled into an eight-weeks CCR programme (Phase II), followed by an 18-months CCR maintenance programme (Phase III) in Raja Isteri Pengiran Anak Saleha (RIPAS) Hospital from 2011 to 2015. Short Form 36 (SF36), exercise test time (ETT), resting systolic and diastolic blood pressure (SBP, DBP), resting heart rate, fasting blood sugar, cholesterol profile (total cholesterol, HDL, LDL, triglyceride), weight, waist circumference (WC) and smoking status were recorded at baseline Phase II enrolment (P1), at the end of Phase II (P2) and Phase III (P3). Results: of the 240 patients enrolled, only 182 patients (75.8% retention rate) completed at least 60% attendance of CCR Phase II programme and entered into CCR Phase III maintenance programme. At the end of Phase III, only 122 patients had complete dataset for analysis. There were statistically significant differences in SF36 scores (71.9±18.4 to 77.3±17.0; p=0.001) and ETT (8.4±2.7 to 9.8±2.9; all P<0.001), Fasting blood sugar (p=0.029), total cholesterol (p=0.001), HDL (p=0.001), LDL (p=0.007), trygliceride (p=0.034) and waist circumference (p=0.026) between all time points (P1-P2-P3). However, these differences on post hoc analysis were attributed to outcome measure improvements which were only seen after completion of Phase II (P2) and were maintained only in SF36 scores and ETT with significant improvement in HDL levels after Phase III (P3) of the CCR programme. Conclusion: This is the first cardiac rehabilitation efficacy evaluation in Brunei Darussalam. Our study showed that an eight-weeks Phase II CCR programme can significantly improved quality of life measures, exercise test time, biochemical parameters and waist circumference in low risk cardiac patients with sustained improvements in the quality of life measures and exercise tolerance when combine with a 18 months Phase III maintenance programmes. Further implementation of a short supervised period of Phase II in between Phase III may help improve compliance and maintain outcomes.

Key words: Cardiac risk factors, Cardiac rehabilitation, Quality of Life, Percutaneous coronary intervention, myocardial revascularisation.
Brunei International Medical Journal (BIMJ)
Official Publication of the Ministry of Health, Brunei Darussalam

EDITORIAL BOARD

Editor-in-Chief
William Chee Fui CHONG

Sub-Editors
Vui Heng CHONG
Ketan PANDE

Editorial Board Members
Nazar LUQMAN
Muhd Syafiq ABDULLAH
Alice Moi Ling YONG
Ahmad Yazid ABDUL WAHAB
Jackson Chee Seng TAN
Dipo OLABUMUYI
Pemasiri Upali TELISINGHE
Roselina YAAKUB
Pengiran Khairol Asmee PENGIRAN SABTU
Dayangku Siti Nur Ashikin PENGIRAN TENGAH

INTERNATIONAL EDITORIAL BOARD MEMBERS

Lawrence HO Khek Yu (Singapore)
Emily Felicia Jan Ee SHEN (Singapore)
John YAP (United Kingdom)
Christopher HAYWARD (Australia)
Jose F LAPENNA (Philippines)
Surinderpal S BIRRING (United Kingdom)
Leslie GOH (United Kingdom)
Chuen Neng LEE (Singapore)
Jimmy SO (Singapore)
Simon Peter FROSTICK (United Kingdom)

Advisor
Wilfred PEH (Singapore)

Past Editors
Nagamuttu RAVINDRANATHAN
Kenneth Yuh Yen KOK

Proof reader
John WOLSTENHOLME (CIBT Brunei Darussalam)
Aim and Scope of Brunei International Medical Journal

The Brunei International Medical Journal (BIMJ) is a six monthly peer reviewed official publication of the Ministry of Health under the auspices of the Clinical Research Unit, Ministry of Health, Brunei Darussalam.

The BIMJ publishes articles ranging from original research papers, review articles, medical practice papers, special reports, audits, case reports, images of interest, education and technical/innovation papers, editorials, commentaries and letters to the Editor. Topics of interest include all subjects that relate to clinical practice and research in all branches of medicine, basic and clinical including topics related to allied health care fields. The BIMJ welcomes manuscripts from contributors, but usually solicits reviews articles and special reports. Proposals for review papers can be sent to the Managing Editor directly. Please refer to the contact information of the Editorial Office.

Instruction to authors

Manuscript submissions
All manuscripts should be sent to the Managing Editor, BIMJ, Ministry of Health, Brunei Darussalam; e-mail: editor-in-chief@bimjonline.com. Subsequent correspondence between the BIMJ and authors will, as far as possible via should be conducted via email quoting the reference number.

Conditions
Submission of an article for consideration for publication implies the transfer of the copyright from the authors to the BIMJ upon acceptance. The final decision of acceptance rests with the Editor-in-Chief. All accepted papers become the permanent property of the BIMJ and may not be published elsewhere without written permission from the BIMJ.

Ethics
Ethical considerations will be taken into account in the assessment of papers that have experimental investigations of human or animal subjects. Authors should state clearly in the Materials and Methods section of the manuscript that institutional review board has approved the project. Those investigators without such review boards should ensure that the principles outlined in the Declaration of Helsinki have been followed.

Manuscript categories

Original articles
These include controlled trials, interventional studies, studies of screening and diagnostic tests, outcome studies, cost-effectiveness analyses, and large-scale epidemiological studies. Manuscript should include the following; introduction, materials and methods, results and conclusion. The objective should be stated clearly in the introduction. The text should not exceed 2500 words and references not more than 30.

Review articles
These are, in general, invited papers, but unsolicited reviews, if of good quality, may be considered. Reviews are systematic critical assessments of literature and data sources pertaining to clinical topics, emphasising factors such as cause, diagnosis, prognosis, therapy, or prevention. Reviews should be made relevant to our local setting and preferably supported by local data. The text should not exceed 3000 words and references not more than 40.

Special Reports
This section usually consist of invited reports that have significant impact on healthcare practice and usually cover disease outbreaks, management guidelines or policy statement paper.

Audits
Audits of relevant topics generally follow the same format as original article and the text should not exceed 1,500 words and references not more than 20.

Case reports
Case reports should highlight interesting rare cases or provide good learning points. The text should not exceed 1000 words; the number of tables, figures, or both should not be more than two, and references should not be more than 15.

Education section
This section includes papers (i.e. how to interpret ECG or chest radiography) with particular aim of broadening knowledge or serve as revision materials. Papers will usually be invited but well written paper on relevant topics may be accepted. The text should not exceed 1500 words and should include not more than 15 figures illustration and references should not be more than 15.

Images of interest
These are papers presenting unique clinical encounters that are illustrated by photographs, radiographs, or other figures. Image of interest should include a brief description of the case and discussion with educational aspects. Alternatively, a mini quiz can be presented and answers will be posted in a different section of the publication. A maximum of
three relevant references should be included. Only images of high quality (at least 300dpi) will be acceptable.

Technical innovations
This section includes papers looking at novel or new techniques that have been developed or introduced to the local setting. The text should not exceed 1000 words and should include not more than 10 figures and references and should not be more than 10.

Letters to the Editor
Letters discussing a recent article published in the BIMJ are welcome and should be sent to the Editorial Office by e-mail. The text should not exceed 250 words; have no more than one figure or table, and five references.

Criteria for manuscripts
Manuscripts submitted to the BIMJ should meet the following criteria: the content is original; the writing is clear; the study methods are appropriate; the data are valid; the conclusions are reasonable and supported by the data; the information is important; and the topic has general medical interest. Manuscripts will be accepted only if both their contents and style meet the standards required by the BIMJ.

Authorship information
Designate one corresponding author and provide a complete address, telephone and fax numbers, and e-mail address. The number of authors of each paper should not be more than twelve; a greater number requires justification. Authors may add a publishable footnote explaining order of authorship.

Group authorship
If authorship is attributed to a group (either solely or in addition to one or more individual authors), all members of the group must meet the full criteria and requirements for authorship described in the following paragraphs. One or more authors may take responsibility ‘for’ a group, in which case the other group members are not authors, but may be listed in an acknowledgement.

Authorship requirement
When the BIMJ accepts a paper for publication, authors will be asked to sign statements on (1) financial disclosure, (2) conflict of interest and (3) copyright transfer. The correspondence author may sign on behalf of co-authors.

Authorship criteria and responsibility
All authors must meet the following criteria: to have made substantial contributions to the conception and design, and the analysis and interpretation of the data (where applicable); to have made substantial contributions to the writing or revision of the manuscript; and to have reviewed the final version of the submitted manuscript and approved it for publication. Authors will be asked to certify that their contribution represents valid work and that neither the manuscript nor one with substantially similar content under their authorship has been published or is being considered for publication elsewhere, except as described in an attachment. If requested, authors shall provide the data on which the manuscript is based for examination by the editors or their assigns.

Financial disclosure or conflict of interest
Any affiliation with or involvement in any organisation or entity with a direct financial interest in the subject matter or materials discussed in the manuscript should be disclosed in an attachment. Any financial or material support should be identified in the manuscript.

Copyright transfer
In consideration of the action of the BIMJ in reviewing and editing a submission, the author/s will transfer, assign, or otherwise convey all copyright ownership to the Clinical Research Unit, RIPAS Hospital, Ministry of Health in the event that such work is published by the BIMJ.

Acknowledgements
Only persons who have made substantial contributions but who do not fulfill the authorship criteria should be acknowledged.

Accepted manuscripts
Authors will be informed of acceptances and accepted manuscripts will be sent for copyediting. During copyediting, there may be some changes made to accommodate the style of journal format. Attempts will be made to ensure that the overall meaning of the texts are not altered. Authors will be informed by email of the estimated time of publication. Authors may be requested to provide raw data, especially those presented in graph such as bar charts or figures so that presentations can be constructed following the format and style of the journal. Proofs will be sent to authors to check for any mistakes made during copyediting. Authors are usually given 72 hours to return the proof. No response will be taken as no further corrections required. Corrections should be kept to a minimum. Otherwise, it may cause delay in publication.

Offprint
Contributors will not be given any offprint of their published articles. Contributors can obtain an electronic reprint from the journal website.

DISCLAIMER
All articles published, including editorials and letters, represent the opinion of the contributors and do not reflect the official view or policy of the Clinical Research Unit, the Ministry of Health or the institutions with which the contributors are affiliated. The appearance of advertisement does not necessarily constitute endorsement by the Clinical Research Unit or Ministry of Health, Brunei Darussalam. Furthermore, the publisher cannot accept responsibility for the correctness or accuracy of the advertisers’ text and/or claim or any opinion expressed.
COMPREHENSIVE CARDIAC REHABILITATION PROGRAMME IMPROVES QUALITY OF LIFE AND EXERCISE TOLERANCE IN LOW RISK CARDIAC PATIENTS.

Seng Khiong JONG1, Daphne Teck Ching LAI2, Chee Fui CHONG3, Sok King ONG4, Chean Lin CHONG5

1Cardiac Rehabilitation, Occupational Therapy Unit, Raja Isteri Pengiran Anak Saleha Hospital, Negara Brunei Darussalam, 2Department of Computer Science, Faculty of Science, Universiti Brunei Darussalam, Negara Brunei Darussalam, 3Department of Surgery, Raja Isteri Pengiran Anak Saleha Hospital, Negara Brunei Darussalam, 4Department of Public Health, Ministry of Health, Negara Brunei Darussalam, 5Cardiology Unit, Department of Internal Medicine, Raja Isteri Pengiran Anak Saleha Hospital, Negara Brunei Darussalam

ABSTRACT

Objective: To assess the effect of an outpatient comprehensive cardiac rehabilitation (CCR) programme on cardiac risk factors and quality of life among low risk cardiac patients.

Method: Retrospective review of 240 low risk cardiac patients who were enrolled into an eight-weeks CCR programme (Phase II), followed by an 18-months CCR maintenance programme (Phase III) in Raja Isteri Pengiran Anak Saleha (RIPAS) Hospital from 2011 to 2015. Short Form 36 (SF36), exercise test time (ETT), resting systolic and diastolic blood pressure (SBP, DBP), resting heart rate, fasting blood sugar, cholesterol profile (total cholesterol, HDL, LDL, triglyceride), weight, waist circumference (WC) and smoking status were recorded at baseline Phase II enrolment (P1), at the end of Phase II (P2) and Phase III (P3). Results: of the 240 patients enrolled, only 182 patients (75.8% retention rate) completed at least 60% attendance of CCR Phase II programme and entered into CCR Phase III maintenance programme. At the end of Phase III, only 122 patients had complete dataset for analysis. There were statistically significant differences in SF36 scores (71.9±18.4 to 77.3±17.0; p=0.001) and ETT (8.4±2.7 to 9.8±2.9; all P<0.001), Fasting blood sugar (p=0.029), total cholesterol (p=0.001), HDL (p<0.001), LDL (p=0.007), trygliceride (p=0.034) and waist circumference (p=0.026) between all time points (P1-P2-P3). However, these differences on post hoc analysis were attributed to outcome measure improvements which were only seen after completion of Phase II (P2) and were maintained only in SF36 scores and ETT with significant improvement in HDL levels after Phase III (P3) of the CCR programme. Conclusion: This is the first cardiac rehabilitation efficacy evaluation in Brunei Darussalam. Our study showed that an eight-weeks Phase II CCR programme can significantly improved quality of life measures, exercise test time, biochemical parameters and waist circumference in low risk cardiac patients with sustained improvements in the quality of life measures and exercise tolerance when combine with a 18 months Phase III maintenance programmes. Further implementation of a short supervised period of Phase II in between Phase III may help improve compliance and maintain outcomes.

Keywords: Cardiac risk factors, Cardiac rehabilitation, Quality of Life, Percutaneous coronary intervention, myocardial revascularisation.

INTRODUCTION

Globally, cardiovascular disease (CVD) is the leading cause of Years of Life Lost (YLL) due to premature mortality. In most countries,
the national health expenditures for CVD are the highest, varying between 8-22% of the country’s GDP. Effective primary, secondary and tertiary prevention strategies, including cardiac rehabilitation (CR), are paramount to control CVD. Many studies have demonstrated improvement and effectiveness of outpatient CR programme (Phase II) in managing cardiac risk factors. Comprehensive Cardiac Rehabilitation (CCR) programme, which includes an additional educational components besides the usual supervise exercise components can reduce cardiac mortality by 26-36% and total mortality by 13-26%. Long -term comprehensive cardiac care that incorporates close follow-up (Phase III) is likely to be more effective and improve survival. The Heart Watch’s study found that CCR programmes (Phase II) without any Phase III follow-up would most likely allow patients to fall back to their previously undesired lifestyle. Hence Phase III CCR programmes help patients monitor and maintain healthy lifestyles, which help sustain the benefits gained from Phase II.

CVD is the second leading cause of death in Brunei Darussalam, accounting for 12.5-15.5% of total deaths. In Brunei, only 3 phases CCR programmes were used. Phase 1 is when patients were seen in Coronary Care Unit. Phase 2 is where patients come to CCR programme as outpatient (8 weeks, twice a week programme) and Phase 3 is where patients stay in the community. An Australian model CCR programme was first established in Raja Isteri Pengiran Anak Saleha (RIPAS) hospital in 2004, to prevent cardiac patients from a second cardiac event. The CCR programme at RIPAS Hospital consisted of 3 phases, with Phase I CR initiated while patients are still in coronary care unit (CCU) recovering from their recent heart attack. Once discharged, patients with recent MI are referred to Outpatient rehabilitation unit to continue their CR in Phase II CR programmes for a total of 8 weeks. On completion of CR programme (Phase II), patients are entered into an 18 months Phase III CCR programme where they are continue with self directed CR in the community and maintains a long-term heart health on their own.

There has been no evaluation study on the impact of such CCR programme for cardiac patients in Brunei Darussalam. This study was carried out as part of our Departmental audit on our CCR programme to evaluate its effectiveness in terms of improvement in cardiac risk factors, quality of life and sustainability of benefits among cardiac patients after completing 8 weeks of Phase II supervised CCR programme and 18 months of Phase III self-monitored CCR programme respectively in RIPAS Hospital.

METHOD
Participants
Records from patients who have undergone Phase II CCR programme and 18 months Phase III CCR maintenance programme from 2011 to 2015 were retrospectively reviewed. During the study period, patients were referred from hospitals and clinics (government and private) to the CCR programme. Prior to entry into the programme, all patients were screened by cardiologists for enrolment eligibility into the Phase II. Inclusion criteria included any of the following: 1) uncomplicated myocardial infarction managed with medications only; 2) history of coronary arteries revascularisation, either percutaneous transluminal coronary angioplasty (PTCA) or heart surgery; 3) computed tomography angiogram showing minor coronary artery diseases but with symptoms; 4) ejection fraction of >50%; 5) valve surgery and 6) controlled atrial fibrillation, blood pressure, diabetic mellitus and renal impairment. Exclusion criteria were: 1) ejection fraction <50%; 2) PTCA stent/s deployed <one month previously; 3) surgery <six months previously; 4) joint problems in the lower limbs and 5) uncontrolled hyperten-
At Programme Entry

Data were prospectively collected by the CR nurses since 2004 for patients recruited to the CCR programme and records kept in the rehabilitation unit. A total of 240 patients have registered and undergone CCR programmes at RIPAS Hospital during the study period from 2011-2015. These 240 records were retrospectively retrieved and reviewed.

The recruitment process into the CCR programme and its pathways and assessments are shown in Figure 1. In short, a maximum of 10 patients were recruited per rehabilitation group. Recruitment stop once 10 patients consented to attend. On average 6-7 patients per group attended the programme out of the 10 patients recruited. Patients were recruited from all three district hospitals including RIPAS Hospital, primary health clinics, and from Gleneagles Jerudong Park Medical Centre for patients post cardiac procedures. All patients were required to undergo a stress test (Bruce Protocol) to assess fitness prior to starting the CCR programme. Patients certified fit by cardiologists were enrolled into Phase II. Phase II consisted of 16 sessions over eight weeks. Each session was made up of one-hour supervised exercise and one-hour cardiac related education. After initial interview, blood tests were taken after one to two weeks and patients were enrolled into the programme within two to three months. All blood specimens were analysed at the laboratory in the RIPAS hospital. The Short Form 36 (SF36) Health Survey was used to assess patients’ quality of life.14

CCR Programme Intervention

Eight Weeks Phase II Supervised Group Exercise Session

Patient was assigned to an exercise station after completing the baseline assessment. During the one-hour supervised training, they rotate through 10 pre-arranged exercise stations providing resistance and cardio workout.

Each session starts with 15 minutes of warm-up, followed by 30 minutes circuit training with 3 minutes on each exercise station, and finally 15 minutes of cooling down.

The supervised exercise session started with light intensity exercise to achieve 60% target HR and matched it with the original Borg Rating of Perceive Exertion (RPE) Scale.16 The exercise intensity gradually increased over 8 weeks period, as tolerated by patients up to RPE 15 or patients’ heart rate reached maximum of 85% target HR. Each exercise session was followed by an hour of education session. This study adopted a com-
prehensive approach, which included exercise and education sessions that will empower patients to take more health conscious actions and help prevent future heart attack.8,17

Eight Weeks Phase II Group Education Session
Patients’ families were encouraged to attend the education sessions. These sessions covered information on secondary prevention of CVD, healthy lifestyle and diet, physical activity, smoking cessation, risk factor profile, treatment procedures, importance of medication, coping with depression, relaxation technique, spiritual support and cardiopulmonary resuscitation. A multidisciplinary team consisting of clinical psychologist, cardiac rehabilitation coordinator, dietitian, diabetes nurse educator, national resuscitation nurse, occupational therapist, pharmacist, physiotherapist, religious teacher, cardiologist and general practitioner from smoking cession clinic, delivered these sessions.

Phase III Maintenance Programme
Patients with at least 60% attendance in Phase II proceeded to Phase III maintenance programme, lasting 18 months (Figure 1). Patients who failed to attend 60% of Phase II were re-enrolled for the next Phase II programme. In Phase III, patients performed self-exercise and were encouraged to achieve at least 150 minutes of exercise time per week as recommended by the American College of Sports Medicine.15 There were six review sessions at three monthly intervals. Results were revealed to patients in the sixth review session before discharge.

CCR Programme Outcome Assessment
Baseline assessment
On day one of entering Phase II CR programme, resting baseline (denoted as P1) measurements such as SF36, resting Blood Pressure (BP), Heart Rate (HR), Height, Weight, Waist Circumference (WC) and Exercise Test Time (ETT) were collected. BP was measured after at least 15 minutes of rest. In patients with diabetes mellitus, a sugar reading of above 16.7 mmol/l (using Abbott Optium Xceed dipstix blood glucose meter) would lead to urine ketone test using UroColor™10. If no ketone was found, patients would proceed with exercise test. Otherwise, they were referred to diabetic clinic for management.

Patients were randomly assigned to a treadmill (GE Marquette Series 2000 Treadmill) or a Bicycle Ergometer (Lode Carival 400 Exercise Bike) test. The exercise tests ended when the patient signaled to stop, patient displayed symptoms listed as contraindication by the American College of Sport Medicine or upon reaching 85% of target HR.15 HR and oxygen saturation level were measured at two minutes thirty seconds (steady stage) after each level of exercise tests, to ensure that the target HR did not exceed 85% and oxygen saturation level is not below 90%.

Assessment at the end of Phase II and Phase III
The same baseline parameters were measured again during the 14th session of Phase II CCR programme (denoted as P2) and the 5th review session (denoted as P3) of Phase III. The exercise tests performed at these times would be the same assigned during commencement of Phase II. Test results were revealed to patients at the end of the Phase II and Phase III follow-up.

Data Analysis
All analyses were conducted using the R Statistical Platform.19 Continuous data were presented as mean ± standard deviation. Nominal data were presented as percentage. Repeated ANOVA using the aov R function is performed on each parameter where patient records are complete across the three phases. This was followed by post hoc test Tukey Honest Significant Differences (Tukey HSD) using
the TukeyHSD R function to determine significance of improvement between phases. Any statistical significance improvements in SF36 score will be analysed further by performing Boxplots on all 8 subscales (a: physical function; b: physical role; c: Body pain; d: General health; e: Vitality; f: Social functioning; g: Emotional role; h: Mental health) to assess which subscale showed significant improvement. For each subscale, only complete patient records across the three phases were considered.

RESULTS
At the period 2011-2015, a total of 240 patients were registered with CCR programme. Only 182 patients completed at least 60% attendance of the 8 weeks CCR programme and were enrolled into Phase III maintenance CCR Programme. There was 75.8% retention rate from registration to completing CCR programme (both Phase II and III). Reasons for non-attendance were a lack of transport, inability to get off work, forgetting appointment and lack of a reminder system for patients of their appointment. Of these, only 122 patients with complete dataset were analysed. Sixty patients had records with missing data and were excluded from the analysis. Table 1 represents the baseline characteristics of the 122 patients. The mean age of these 122 patients was 57.1 ± 9 years and majority 83% were male. Cardiovascular risk factors such as hypertension (77.1%), diabetes (34.4%) and hyperlipidemia (91.8%) were higher than general population. Indications for entry into CCR programme were post-interventional rehabilitation in 91.0% of patients (Table 1).

Outcomes
On completion of the CCR programme (both Phase II and Phase III maintenance, (P1-P2-P3), statistically significant differences were seen in SF36 (p=0.001), ETT (p<0.001), FBS (p=0.029), blood lipids levels (TC (p=0.001), LDL (p=0.007), HDL (p=0.001), TG (p=0.034)) and WC (p=0.026) (Table 2). On post hoc analysis, these differences were mainly attributed as significant improvements in the outcome measures mentioned above at the end of Phase II CCR programme (P1-P2 assessments: Table 2, except HDL). Improvements from baseline P1 seen in SF36 and ETT at the end of CCR Phase II programme were maintained during the CCR Phase III maintenance programme. However, these improvements were not maintained for biochemical parameters (FBS, TC, LDL and TG) and WC, which showed a worsening from baseline P1 readings although they were not statistically significant (Table 2). HDL however at end of CCR Phase III maintenance programme showed significant improvements (P1-P3: p=0.008; P2-P3: p=0.001).

Quality of Life (QOL) Boxplots
SF36 showed a significant improvement average score of 5.4 in QOL on completion of CCR Phase II programme (Table 2). There was no further improvement in SF36 scores with Phase III CCR programme but the improvements achieved in Phase II were maintained. SF36 subscales Boxplots analysis showed, improvement at Phase II with maintenance in Phase III were seen in Physical Function, General Health and Mental Health (Figure 2: a, d and h respectively), with increased median scores. While there was improvement in Vitality (Figure 2: e) at P2, the score deteriorated at P3. For subscales, Role (Figure 2: b - Physical and Emotional) and Body Pain (Figure 2: c), the scores were maintained across the three phases. For Social Functioning (Figure 2: f), the boxplots did not showed any improvements from baseline at the end of CCR Phase II programme but did showed a decline in CCR Phase III maintenance programme.

Cardiac Parameters
The physical fitness level (ETT) significantly increased by average of 1.4 minutes from P1 to P2. At P2 to P3, ETT decreased significantly (P2-P3: p<0.001). Despite this, there was
Table 1: Baseline characteristics of participants.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Subjects (n = 122)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Mean ± SD years)</td>
<td>57.1±9</td>
</tr>
<tr>
<td>Gender</td>
<td>Male 101 (83%)</td>
</tr>
<tr>
<td></td>
<td>Female 21 (17%)</td>
</tr>
<tr>
<td>Malay</td>
<td>107 (88%)</td>
</tr>
<tr>
<td>Chinese</td>
<td>9 (7%)</td>
</tr>
<tr>
<td>Others</td>
<td>6 (5%)</td>
</tr>
<tr>
<td>Nationality</td>
<td>Bruneian 116 (95.1%)</td>
</tr>
<tr>
<td></td>
<td>Foreigner 6 (4.9%)</td>
</tr>
<tr>
<td>Clinical Risk factors</td>
<td></td>
</tr>
<tr>
<td>Family history of coronary artery disease</td>
<td>28 (23%)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>73.2 ± 11.6</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>28.7 ± 3.9</td>
</tr>
<tr>
<td>WC (inches)</td>
<td>37.2 ± 3.6</td>
</tr>
<tr>
<td>Hypertension</td>
<td>94 (77.1%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>42 (34.4%)</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>112 (91.8%)</td>
</tr>
<tr>
<td>Smoking</td>
<td>7 (5.7%)</td>
</tr>
<tr>
<td>Social alcohol use</td>
<td>4 (3.3%)</td>
</tr>
<tr>
<td>No risk factors</td>
<td>4 (3.3%)</td>
</tr>
</tbody>
</table>

Medications

Statin	118 (96.7%)
Antiplatelets	106 (86.9%)
Histamine-2 Blockers	53 (43.4%)
Beta-blockers	50 (41%)
ACE-inhibitors	28 (23%)
ARB	39 (32%)
Calcium Channel Blockers	41 (33.6%)
Diabetic medications	38 (31.1%)
Anti-ischemic metabolic agent	9 (7.4%)
Nitrates	5 (4.1%)
Diuretics	9 (7.4%)
CCR indication	
Minor CAD	11 (9.0%)
PCI	63 (51.6%)
CABG/+Pacemaker	31 (25.4%)
PCI and CABG	6 (4.9%)
PCI and VR	1 (0.8%)
VR	10 (8.2%)

Abbreviation: BMI, Body Mass Index; WC, Waist Circumference; CAD, Coronary Artery Disease; PCI, Percutaneous Coronary Intervention; CABG, Coronary Artery Bypass Grafts; VR, Valve Repair; ACE-inhibitors, Angiotensin Converting Enzyme inhibitors; ARB, Angiotensin II Receptor Blocker.

significant overall improvement from baseline (P1-P3: p<0.004) to completion of CCR Phase III Maintenance programme. For SBP and DBP, small non-statistically significant improvement of 2.5 and 0.3 mmHg respectively were observed between P1 and P2, its level increase between P2 and P3 but no statistically significant overall improvement between P1 and P3. There was no significant improvements seen in HR.

Most smokers had stopped smoking after experiencing MI, PCI or CABG. Seven smokers continued to smoke at baseline P1 of CCR Phase II programme. Two patients stopped smoking after Phase II and remain smoke free until end of Phase III. In total, two (29%) had abstained from smoking completely between P1 to P3.

DISCUSSION

This is the first evaluation study carried out in Brunei Darussalam on CCR programme comprising of two months of Phase II followed by 18 months of Phase III maintenance programmes. This study demonstrated positive effect on our patients in several measured parameters such as improvements in QOL SP36, ETT, biochemical markers (FBS, TC, HDL, LDL, TG) and WC especially during Phase II when subjects were under close supervision. Again our findings are similar to other studies, which showed improvement in SF36 score and ETT.19-22

It can be seen from the baseline characteristics of the patients, the prevalence of cardiac risk factors (hypertension 77%, diabetes 34% and hyperlipidemia 92%) among our patients are much higher than the prevalence in the general population (hypertension 28%, diabetes 10% and hypercholesterolemia at 51%).23 The CCR Phase II programme resulted in significant improvement in term of controlling fasting blood sugar (diabetes), blood lipids (hyperlipidemia) and WC (obesity), but these improvement were not maintained during the 18 months CCR Phase III maintenance period. In fact, some of these parameters became worse than baseline, suggesting the
Table 2: Anthropometric, Metabolic and Exercise Test variables at Baseline (P1), end of Phase II (P2) programme and end of Phase III (P3) with ANOVA and Tukey HSD results.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Time points</th>
<th>Mean±SD</th>
<th>F-statistics (df)</th>
<th>p</th>
<th>Tukey HSD</th>
<th>95% CI</th>
<th>adj p</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF36</td>
<td>P1</td>
<td>71.94±18.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>77.3±17.02</td>
<td>6.708 (2)</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>77.12±15.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETT (min)</td>
<td>P1</td>
<td>8.35±2.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>9.79±2.85</td>
<td>57.38 (2)</td>
<td><0.001</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>8.8±2.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.004</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>P1</td>
<td>126.25±12.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>123.79±11.04</td>
<td>1.579 (2)</td>
<td>0.208</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>124.45±13.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>P1</td>
<td>78.2±8.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>78.8±8.99</td>
<td>0.74 (2)</td>
<td>0.478</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>79.08±8.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>P1</td>
<td>71.83±11.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>70.08±10.77</td>
<td>2.296 (2)</td>
<td>0.103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>71.66±10.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBS (mmol/L)</td>
<td>P1</td>
<td>5.98±2.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>5.75±1.58</td>
<td>3.587 (2)</td>
<td>0.029</td>
<td></td>
<td></td>
<td>0.022</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>6.16±2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC (mmol/L)</td>
<td>P1</td>
<td>4.14±0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>3.96±0.93</td>
<td>7.043 (2)</td>
<td>0.001</td>
<td></td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>4.25±1.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL (mmol/L)</td>
<td>P1</td>
<td>1.09±0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>1.08±0.21</td>
<td>7.288 (2)</td>
<td>0.001</td>
<td></td>
<td></td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>1.13±0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL (mmol/L)</td>
<td>P1</td>
<td>2.34±0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>2.2±0.76</td>
<td>5.108 (2)</td>
<td>0.007</td>
<td></td>
<td></td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>2.42±0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG (mmol/L)</td>
<td>P1</td>
<td>1.6±0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>1.48±0.66</td>
<td>3.422 (2)</td>
<td>0.034</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>1.59±0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>P1</td>
<td>73.16±11.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>73.19±11.36</td>
<td>0.294 (2)</td>
<td>0.746</td>
<td></td>
<td></td>
<td>0.840</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>73.3±11.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.745</td>
</tr>
<tr>
<td>WC (inches)</td>
<td>P1</td>
<td>37.17±3.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>36.81±3.48</td>
<td>3.718 (2)</td>
<td>0.026</td>
<td></td>
<td></td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>37.65±5.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.019</td>
</tr>
</tbody>
</table>

Footnote: P1: Baseline; P2: 8 weeks; P3: 18 months.
Abbreviation: SF36, Short Form 36 Quality of Life Questionnaire; ETT, Exercise Testing Time; SBP, Systolic Blood pressure; DBP, Diastolic Blood pressure; HR, Heart Rate; FBS, Fasting Blood Sugar; TC, Total Cholesterol; HDL, High Density Lipoprotein; LDL, Low Density Lipoprotein; TC, Triglyceride; WC, Waist Circumference.
lack of compliance with programme exercises and diet among our participants due to a lack of supervision. Short term supervised CR programme studies have shown significant improvement in exercise capacity after three months but was not sustained at 12 months follow up. Our study too have shown even with longer follow up of 18 months, a large part of the improvements achieved during the Phase II CCR programme are not maintained. Perhaps adding a component of intermittent close supervision of exercises and diet during the 18 months Phase III may improve compliance with the programme. Despite a less than satisfactory outcome achieved with Phase III of our CCR programme, some of our patients did improved their exercise capacity even after 18 months followed up but this in a minority group who may be more committed to improving their lifestyle. This study confirmed that patients require reassurance and encouragement throughout their cardiac care to encourage behaviour change. Phase III can provide such support and help these cardiac patients live an active life in the community, leading to reduction in mortality but suggest a period of close supervision with their exercise designed and implemented someway in the middle of the 18 months period may help to improve compliance.

Analysis of the SF36 QOL questionnaire subscales (Figure 2) showed improvement in physical function, general health and mental health at the end of 8 weeks and maintained by the end of 18 months followed up, although there were no further improvements. This is consistent with existing studies that strengthening physical fitness in Phase II can directly influence mental health until 18 months later. It is of interest to note that the only subscale parameter of SF36 QOL which showed worsening outcome after 18 months of CCR Phase III follow up was social
functioning. This could possibly be explained by the lack of social interaction which the participants were getting while they were undergoing intensive supervised CCR Phase II programme and interacting with other participants of similar condition. This again suggests that in designing future CCR Phase III maintenance programme, a short period (4-8 weeks) of Phase II close supervision injected in between the 18 months of the programme, may help to improve social functioning as well as compliance with programme self exercises and diet. However, this may need to be tested to confirm whether our assumptions are correct.

Limitations

This study has several limitations. First, as with all retrospective study, missing dataset creates a significant problem and as a result almost half of the initial group of 240 patients have to be excluded from the analysis. Thus the small sample size would have affected the statistical power of the analysis. Factors that contributed to poor turnout rates were identified and these include lack of transport, inability to get off work, forgetting appointment and lack of reminder system for patients. Attempts were made by the CR coordinator to provide assistance to patients where possible to improve the turnout.

CONCLUSION

This study demonstrated significant improvement in patient’s cardiac risk factors profile following the two-month closed group CCR programme (Phase II) in Brunei Darussalam. However, not all improvements were maintained during phase III of the CCR maintenance programme except SF36 and ETT. The lack of supervision during the CCR Phase III maintenance programme may have resulted in non-compliance with programme self exercises and diet, thus contributed to the worsening outcome in some of the biochemical parameters.

Recommendation to improve future CCR services

The suggestions to improve compliance and reduce dropout rate are: 1) Strengthen appointment systems with flexible schedules and reminder system; 2) Strengthen communication with the aid of social media to maintain a CCR social network group and organizing social events for patients and their families; 3) Improve the systematic approach to data collection with set protocols to measure the effectiveness of the programme; 4) Strengthen awareness of CCR programme among relevant stakeholders including referring physicians by providing continuous education programme about the CCR programme, 5) Develop Phase III CCR service in designated health clinics and community centers with a 4 weeks close supervision component for better compliance and accessibility by the patients.

Declaration of Conflicting Interests

The Authors declares that there is no conflict of interest.

Funding Acknowledgement

This research is partially supported by Universiti Brunei Darussalam Grant UBD/PNC2/2/RG/1(311).

Ethics

This study was conducted in accordance with the standards set in the Declaration of Helsinki.

REFERENCES

3: American Association of Cardiovascular and

